Module 2: Op Amps
Introduction and Ideal Behavior

Dr. Bonnie H. Ferri
Professor and Associate Chair
School of Electrical and
Computer Engineering

Introduce Op Amps and examine ideal behavior
Lesson Objectives

- Introduce Operational Amplifiers
- Describe Ideal Op Amp Behavior
- Introduce Comparator and Buffer Circuits
Operational Amplifiers (Op Amps)

Specialized circuit made up of transistors, resistors, and capacitors fabricated on an integrated chip

![Operational Amplifier Diagram](image)

Uses:
- Amplifiers
- Active Filters
- Analog Computers
Op Amps in Circuits

- Active Element: has its own power supply
- Symbol ignores the +/- V_S in the symbol since it does not affect circuit behavior

$V_S = 10V, 15V$
Open Loop Behavior

\[v_o = A(v_+ - v_-) \]
Comparator Circuit

\[V_o = \begin{cases} +V_s & \text{if } v_{in} > 0 \\ -V_s & \text{if } v_{in} < 0 \end{cases} \]
Example

\[C \sin(\omega t) \]

Diagram:
- Input voltage: \(V_+ \) and \(V_- \)
- Output voltage: \(V_o \)
- Typical waveform for an op-amp with \(V_o \) at positive and negative saturation levels.
Ideal Op Amp Behavior

\[i_+ = i_- = 0 \]

\[v_+ - v_- = 0 \]
Buffer Circuit

\[V_{in} = V_{o} \]
Summary

- Op amps are active devices that can be used to filter or amplify signals linearly.
- Ideal op amps:
 - $i_+ = i_- = 0$
 - $v_+ - v_- = 0$
- Circuits: comparator and buffer
Remainder of Module 2: Op Amps

- Buffer Circuit
- Basic Amplifier Configurations
- Differentiators and Integrators
- Active Filters
Demonstrate buffer circuit behavior
Lesson Objectives

- Introduce physical op amps in circuits
- Examine Buffer Circuit behavior
Buffer Circuit

- Use to boost power without changing voltage waveform

\[v_{in} = v_o \]
Example: Without Buffer
Physical Op Amps

$V_S = 15V$

<table>
<thead>
<tr>
<th>Signal</th>
<th>PIN</th>
</tr>
</thead>
<tbody>
<tr>
<td>v_-</td>
<td>2</td>
</tr>
<tr>
<td>v_+</td>
<td>3</td>
</tr>
<tr>
<td>$-V_S$</td>
<td>4</td>
</tr>
<tr>
<td>v_o</td>
<td>6</td>
</tr>
<tr>
<td>$+V_S$</td>
<td>7</td>
</tr>
</tbody>
</table>
Example: With Buffer

\[V_{in} \rightarrow + \rightarrow R \rightarrow + \rightarrow V_o \]

\[V_{in} \rightarrow + \rightarrow - \rightarrow + \rightarrow + \rightarrow V_o \rightarrow + \rightarrow R \rightarrow + \]
Example: With Buffer
Summary

- Buffers boost the power without changing the voltage waveform
- Demonstrated physical op amp circuits
Basic Op Amp Amplifier Configurations

Introduce Inverting and Non-Inverting Amplifiers, Difference and Summing Amplifiers
Lesson Objectives

- Introduce
 - Inverting and Non-Inverting Configurations
 - Difference and Summing Configurations
- Introduce the Gain of a circuit
Non-Inverting Amplifiers

\[V_o = \frac{R_2 + R_3}{R_3} V_{in} \]

\[V_o = G V_{in} \quad \text{Gain}: G = \frac{R_2 + R_3}{R_3} \]
Non-Inverting Amplifier Example

If $R_2 = R_3 = 200\Omega$,

- Since $G > 1$, the input is amplified
- If $G < 1$, the input is attenuated
Inverting Amplifier

\[V_o = -\frac{R_f}{R_1} V_{in} \]

\[V_o = G V_{in} \]
Inverting Amplifier Example

R₁ = 1000Ω, Rᶠ = 2000Ω

- If G > 1, the input is amplified
- If G < 1, the input is attenuated
Difference Circuit

\[V_o = \frac{R_F}{R_1} (V_2 - V_1) \]
Difference Circuit

\[V_o = \frac{R_F}{R_1} (V_2 - V_1) \]
Summing Amplifier

\[V_o = G_1 V_1 + G_2 V_2 \]

\[G_1 = -\frac{R_F}{R_1} \quad G_2 = -\frac{R_F}{R_2} \]
Summary

- Gain: \(V_o = G V_{in} \)

- Amplifier Circuit Configurations
 - Non-Inverting Amplifier
 - Inverting Amplifier
 - Difference Amplifier
 - Summing Amplifier
Differentiators and Integrators

Dr. Bonnie H. Ferri
Professor and Associate Chair
School of Electrical and Computer Engineering

Introduce Integrating and Differentiating Op Amp Circuits
Lesson Objectives

- Introduce Differentiators and Integrators
- Demonstrate the performance of both circuits on an oscilloscope
Differentiator Circuit

\[
\frac{dv_c}{dt} = \frac{i}{C} = \frac{V_{o}}{RC}
\]

\[
V_o = -RC \frac{dV_{in}}{dt}
\]
Differentiator Circuit

Derivation:
1. KVL: \(V_{\text{in}} = V_c + Ri + V_o \)
2. \(V_{\text{in}} = V_c \)
3. \(V_o = -Ri = -RC \frac{dV_{\text{in}}}{dt} \)
Differentiator Example

\[V_{in} \to 1 \mu F \to 1000\Omega \to V_{o} \]

\[+V_{S} = 15v \]
\[-V_{S} = -15v \]

\[V_{in} \to v_{-} \to v_{+} \]
\[v_{o} \]

\[v_{o} + V_{S} \]

\[v_{-} \]
Results

\[V_o = -RC \frac{dV_{in}}{dt} \]
Integrator Circuit

\[i = C \frac{dV_c}{dt} \]

\[V_c = \frac{1}{C} \int_0^t i dt \]

\[V_o = \frac{-1}{RC} \int_0^t V_{in} dt \]
Integrator Circuit

For $t < 0$: $V_{in} = iR$ and $V_o = 0$

For $t > 0$: $V_{in} = iR$

$i = V_{in}/R$

$V_{in} = iR + V_c + V_o$

$V_o = -V_c = -1/C \int_0^t V_{in}/R \, dt$

Derivation:

For $t < 0$: $V_{in} = iR$ and $V_o = 0$

For $t > 0$: $V_{in} = iR$

$i = V_{in}/R$

$V_{in} = iR + V_c + V_o$

$V_o = -V_c = -1/C \int_0^t V_{in}/R \, dt$
Integrator Example

Vin \quad v_+ \quad vo

+V_S = 15v

- V_S = -15v
Results

\[V_o = \frac{-1}{RC} \int_0^t V_{in} \, dt \]
Summary

- Differentiator and Integrator Op Amp circuits examined
Active Filters

Dr. Bonnie H. Ferri
Professor and Associate Chair
School of Electrical and Computer Engineering

Introduce active filters and show different types of filters
Lesson Objectives

- Introduce active filter circuits
Analog Filters

Analog Filter $H(\omega)$

Magnitude $|H(\omega)|$

V_{in}

V_{out}

ω (rad/sec)

Magnitude

$0 \leq \omega \leq 1000$

$0 \leq v(t) \leq 2$

Time (sec)

$0 \leq t \leq 0.25$
Quiz

\[V_{in} = 1 + \cos(10(2\pi t)) + \cos(100(2\pi t)) \]

\[V_{out} = 0.45\cos(10(2\pi t)+\theta_1) + 0.97\cos(100(2\pi t)+\theta_2) \]
Summary of RC and RLC (Passive) Filters

RC Lowpass:
\[V_{\text{in}} \rightarrow R \rightarrow C \rightarrow V_{o} \]

RC Highpass:
\[V_{\text{in}} \rightarrow C \rightarrow R \rightarrow V_{o} \]

RLC Lowpass:
\[V_{\text{in}} \rightarrow L \rightarrow R \rightarrow C \rightarrow V_{o} \]

Bode Plots

- Magnitude (dB) vs. \(\omega \)
- "Magnitude (dB)" vs. \(\omega \)
Limitations of RLC Passive Filters

- Depletes power
- No isolation
Active Filters

Active – has its own power supply
- Most common active filters are made from op amps
- Provide isolation

<table>
<thead>
<tr>
<th>Active Filters</th>
<th>Op Amp Circuit</th>
</tr>
</thead>
<tbody>
<tr>
<td>Vin</td>
<td>Vout</td>
</tr>
</tbody>
</table>

![Op Amp Circuit Diagram](image-url)
Summary

- An **analog filter** is a circuit that has a specific shaped frequency response.
- A **active filter** is made of op amps and has its own power supply. Advantages over RLC passive filters:
 - Provides isolation (cascade filters)
 - Boosts the power
 - Can provide sharper roll-off
Impedance Gain

Derivation: \(V_{in} = iZ_1 \)

\[V_o = -iZ_f = -(Z_f/Z_1)V_{in} \]
First-Order Lowpass Filters

Dr. Bonnie H. Ferri
Professor and Associate Chair
School of Electrical and Computer Engineering

Introduce lowpass filters
Lesson Objectives

- Introduce active lowpass filters
Lowpass Filters

- Lowpass filters pass low frequency components and attenuate high frequency components

Transfer Function $H(\omega)$

Linear Plot

- K_{DC}
- $0.707K_{DC}$
- ω_B
- ω

Bode Plot

- $20\log_{10}(K_{DC})$
- $3dB$
- ω

Magnitude (dB)
First-Order Filter

\[
H(\omega) = K_{DC} \frac{1}{\tau j\omega + 1}
\]

- Bandwidth, \(\omega_B = 1/\tau \)
- DC Gain = \(H(0) = K_{DC} \)

Linear Plot

Magnitude

0 \[\omega_B\] \[\omega\]

0.707\(K_{DC}\)
From Passive to Active Lowpass Filters

Isolation at the input:

Isolation in the output:
First-Order Inverting Lowpass Filter

\[V_o = -\frac{R_f}{R_1 R_f C j\omega + 1} V_{in} \]
Frequency Characteristics of LP Filter

\[H(\omega) = -\frac{R_f}{\omega} \frac{1}{R_1 \left(R_f C j \omega + 1 \right)} \]

\[|H(\omega)| = \frac{R_f}{\omega} \frac{1}{R_1 \sqrt{(R_f C \omega)^2 + 1}} \]

\[\angle H(\omega) = 180 - \arctan(R_f C \omega) \]

DC Gain = \(-\frac{R_f}{R_1} \)

Bandwidth, \(\omega_b = \frac{1}{R_f C_f} \)
Derivation: Lowpass Filter
Example

Design an inverting lowpass filter to have a DC gain of -2 and a bandwidth of 500 rad/s:

\[H(\omega) = -\frac{R_f}{R_1} \frac{1}{1 + R_f C j \omega} \]
Summary

- A **lowpass filter** passes low frequency signals and attenuates high frequency signals.

- Three first-order lowpass configurations:
 - Noninverting, isolation at the input
 - Noninverting, isolation at the output
 - Inverting, isolation at input and output
First-Order Highpass Filters

Dr. Bonnie H. Ferri
Professor and Associate Chair
School of Electrical and Computer Engineering

Introduce highpass filters
Lesson Objectives

- Introduce active highpass filters
Highpass Filter

- Passes high frequency components and attenuates low frequency components

![Linear Plot](image)

![Bode Plot](image)
First-Order Filter

Linear Plot

\[H(\omega) = \frac{Kj\omega}{\tau j\omega + 1} \]

Corner Frequency, \(\omega_c = 1/\tau \)
Passband Gain= \(K_{PB} = K/\tau \)
Inverting Highpass Filter Configuration

\[V_o = \frac{-R_f C j \omega}{(R_1 C j \omega + 1)} V_{in} \]
Frequency Characteristics of HP Filter

$$H(\omega) = \frac{-R_f C j \omega}{(R_1 C j \omega + 1)}$$

$$|H(\omega)| = \frac{R_f C \omega}{\sqrt{(R_1 C \omega)^2 + 1}}$$

$$\angle H(\omega) = -90^\circ - \arctan(R_1 C \omega)$$

- **Passband Gain** \((\omega \rightarrow \infty) = -\frac{R_f}{R_1}\)
- **Corner Frequency** \(\omega_c = \frac{1}{R_1 C}\)

![Graph showing frequency response and gain characteristics of the HP filter.](graph.png)
Example

Design a highpass filter to have a passband gain of 2 and a corner frequency of 1k rad/s:
Summary

- **A highpass filter** passes high frequency components in signals and attenuates low frequency components.
- First-order highpass filter

 ![First-order highpass filter diagram](image)

 $$ H(\omega) = \frac{-R_f C j \omega}{R_1 C j \omega + 1} $$

- Design based on
 - Corner frequency of the passband, ω_c
 - Passband gain, K_{PB}